mixtur: An R package for designing, analysisng, and modelling continuous report visual short-term memory studies

Abstract

Visual short-term memory (vSTM) is often measured via continuous-report tasks whereby participants are presented with stimuli that vary along a continuous dimension (e.g., colour) with the goal of memorising the stimuli features. At test, participants are probed to recall the feature value of one of the memoranda in a continuous manner (e.g., by clicking on a colour wheel). The angular deviation between the participant response and the true feature value provides an estimate of recall—and hence, vSTM—precision. Two prominent models of performance on such tasks are the two- and three-component mixture models (Bays et al., 2009; Zhang & Luck, 2008). Both models decompose participant responses into probabilistic mixtures of: (1) responses to the true target value based on a noisy memory representation; (2) random guessing when memory fails. In addition, the three-component model proposes (3) responses to a non-target feature value (i.e., binding errors). Here we report the development of mixtur, an open-source package written for the statistical programming language R that facilitates the fitting of the 2- and 3-component mixture models to continuous report data. We also report the results of several simulations conducted to develop recommendations for researchers on trial numbers, set-sizes and memoranda similarity, as well as conducting parameter recovery and model recovery simulations. It is our hope that mixtur will lower the barrier of entry for utilising mixture modelling.

Publication
under review
Date
Previous